Turk J Math 23 (1999) , 435 – 440. © TÜBİTAK

TWO LEMMAS ON FORMAL POWER SERIES*

Kâzım İlhan İkeda & Masatoshi İkeda

Abstract

Let L be a local field and \tilde{L} the completion of the maximal unramified extension of L. In this short note, we prove

(I) the sequences

 $(1'') \ 0 \to \mathcal{O}_{L}[[X_1, \dots, X_n]] \to \mathcal{O}_{\tilde{L}}[[X_1, \dots, X_n]] \xrightarrow{\phi_L - 1} \mathcal{O}_{\tilde{L}}[[X_1, \dots, X_n]] \to 0$ and (2'')

 $1 \to \mathcal{O}_{L}[[X_{1}, \ldots, X_{n}]]^{x} \to \mathcal{O}_{\tilde{L}}[[X_{1}, \ldots, X_{n}]] \xrightarrow{x} \stackrel{\phi_{L}-1}{\to} \mathcal{O}_{\tilde{L}}[[X_{1}, \ldots, X_{n}]] \to 1$ are exact, where θ_{L} is the Frobenius automorphism over L applied on the coefficients of $\mathcal{O}_{\tilde{L}}[[X_{1}, \ldots, X_{n}]]$, and $\theta_{L} - 1$ respectively denotes the mapping $\alpha \mapsto \alpha^{\theta L} - \alpha$ for (1'') and $\epsilon \mapsto \frac{\epsilon^{\phi} L}{\epsilon}$ for (2'');

(II) $\mathcal{C}^{\circ}(\tilde{L}, h)$ being the group the Coleman power series of degree 0, the sequence

$$1 \to \mathcal{C}^{\circ}(L,h) \to \mathcal{C}^{\circ}(\tilde{L},h)C^{\circ}(\tilde{L},h) \to 1$$

is exact, where $\mathcal{C}^{\circ}(L,h) = \mathcal{O}_L[[X]]^x \cap \mathcal{C}^{\circ}(\tilde{L},h)$

Key words and phrases: Formal power series, Local fields, Formal groups, Lubin-

Tate theory, Coleman power series.

¹⁹⁹¹ Mathematics Subject Classification. 11S31.

^{*}This work had been carried out and completed in the frame of the project "GL(n)" at Tübitak-Feza Gürsey Institute, İstanbul-Turkey. The second author is supported by the Turkish Academy of Sciences (TÜBA).

1. Introduction

The following is well-known (see for example [3]): Let L be a local field, and \tilde{L} te completion of the maximal unramified extension of L in a fixed algebraic closure Ω of L. Then

(i)
$$0 \to \mathcal{O}_L \to \mathcal{O}_{\tilde{L}} \xrightarrow{\phi_L - 1} \mathcal{O}_{\tilde{L}} \to 0$$

and

(ii)
$$1 \to \mathcal{O}_L^x \to \mathcal{O}_{\tilde{L}}^x \xrightarrow{\phi_L - 1} \mathcal{O}_{\tilde{L}}^x \to 1$$

are both exact sequences, where ϕ_L stands for the Frobenius automorphism over L, and $\phi_L - 1$ respectively denotes the mapping $\alpha \mapsto \alpha^{\phi_L} - \alpha$ for (i), and $\epsilon \mapsto \frac{\epsilon^{\phi_L}}{\epsilon}$ for (ii).

In this section we give a formal extension of the above result to the case of formal power series ring. This fact may be well-known, but we did not notice any literature explicitly referring to this fact. So we believe that it might be worthwhile to report it.

We start with a lemma:

Lemma 1. Let R be a commutative ring with unity, and α an automorphism of R such that

(a) the additive endomorphism $\alpha - 1$ of R defined by $x \mapsto x^{\alpha} - x(x \in R)$;

(b) the multiplicative endomorphism $\alpha - 1$ of R^x defined by $\epsilon \mapsto \frac{\epsilon^{\alpha}}{\epsilon} (\epsilon \in R^x)$ are both surjective. Then, R[[X]] and $R[[X]]^x$ being the formal power series ring over R and its group of units respectively, the sequences

(1)
$$0 \to R_{\alpha}[[X]] \to R[[X]] \stackrel{\alpha-1}{\to} R[[X]] \to 0$$

and

(2)
$$1 \to R_{\alpha}[[X]]^x \to R[[X]]^x \stackrel{\alpha \to 1}{\to} R[[X]]^x \to 1$$

are both exact, where the automorphism α is applied only on the coefficients, and R_{α} denotes the fixed subring of α .

Hence, α -1 is surjective on R[[X]] and on $R[[X]]^x$.

Proof. The proof of the first case is trivial. As for the second case, let $\sum_{v=0}^{\infty} a_v X^v$ (with $a_0 \in R^x$) be any element in $R[[X]]^x$. We are looking for an element $\sum_{\mu=0}^{\infty} b\mu X^{\mu}$ (with $b_0 \in R^x$) in $R[[X]]^x$ satisfying

(A)
$$\sum_{\mu=0}^{\infty} b_{\mu}^{\alpha} X^{\mu} = \left(\sum_{\nu=0}^{\infty} a_{\nu} X^{\nu}\right) \left(\sum_{\mu=0}^{\infty} b_{\mu} X^{\mu}\right) = \sum_{\lambda=0}^{\infty} \left(\sum_{\mu=0}^{\lambda} a_{\lambda-\mu} b_{\mu}\right) X^{\lambda}.$$

For $\lambda = 0$, we have $b_0^{\alpha} = a_0 b_0$ whose solution b_0 can be found in \mathbb{R}^x by the assumption. Assume that b_{μ} (for $\mu = 0, 1, \ldots, n-1$) have already been found in \mathbb{R} . Then, for $\lambda = n$, the equation (A) takes the form

(B)
$$b_n^{\alpha} = a_0 b_n + \sum_{\mu=0}^{n-1} a_{n-\mu} b_{\mu} = \frac{b_0^{\alpha}}{b_0} b_n + \sum_{\mu=0}^{n-1} a_{n-\mu} b_{\mu},$$

where the last term is in R by the induction assumption. From (B), we obtain

(C)
$$\left(\frac{b_n}{b_0}\right)^{\alpha} = \frac{b_n}{b_0} + \frac{\sum_{\mu=0}^{n-1} a_{n-\mu} b_{\mu}}{b_0^{\alpha}}$$

Since $b_0 \in R^x$, the last term above is in R. By (a), we can find $\frac{b_n}{b_0} \in R$ satisfying the equation (C). This completes the proof of the existence of $\sum_{\mu=0}^{\infty} b_{\mu} X^{\mu} \in R[[X]]^x$ satisfying (A). Now, the exactness of the second sequence follows easily.

Note that $R[[X_1, \ldots, X_n]]$ is naturally identified with $R[[X_1, \ldots, X_{n-1}]][[X_n]]$ (see [4], pp. 206). Hence, as a corollary, we get:

Corollary 1. Under the same assumptions and notation as above, the sequences $(1') \ 0 \to R_{\alpha}[[X_1, \dots, X_n]] \to R[[X_1, \dots, X_n]] \xrightarrow{\alpha-1} R[[X_1, \dots, X_n]] \to 0$ and $(2') \ 1 \to R_{\alpha}[[X_1, \dots, X_n]]^x \to R[[X_1, \dots, X_n]]^x \xrightarrow{\alpha-1} R[[X_1, \dots, X_n]]^x \to 1$ are both exact.

Hence $\alpha - 1$ is surjective on $R[[X_1, \ldots, X_n]]$ and on $R[[X_1, \ldots, X_n]]^x$.

Corollary 2. Let L be a local field, and \tilde{L} the completion of the maximal unramified extension of L. Then, $\mathcal{O}_{\tilde{L}}[[X_1, \ldots, X_n]]$ and $\mathcal{O}_{\tilde{L}}[[X_1, \ldots, X_n]]^x$ being the formal power series ring over the ring of integers $\mathcal{O}_{\tilde{L}}$ in \tilde{L} and its group of units respectively, the sequences

$$(1'') \ 0 \to \mathcal{O}_{\tilde{L}}[[X_1, \dots, X_n]] \to \mathcal{O}_{\tilde{L}}[[X_1, \dots, X_n]] \stackrel{\phi_L \to 1}{\to} \mathcal{O}_{\tilde{L}}[[X_1, \dots, X_n]] \to 0$$

and

 $(\mathcal{Z}') \ 1 \to \mathcal{O}_L[[X_1, \dots, X_n]]^x \to \mathcal{O}_{\tilde{L}}[[X_1, \dots, X_n]]^x \xrightarrow{\phi_L - 1} \mathcal{O}_{\tilde{L}}[[X_1, \dots, X_n]]^x \to 1$

are both exact, where $\mathcal{O}_L[[X_1, \ldots, X_n]]$ is the ring of formal power series with coefficients in \mathcal{O}_L and ϕ_L is the Frobenius automorphism over L applied on the coefficients of $\mathcal{O}_{\tilde{L}}[[X_1, \ldots, X_n]].$

Hence, $\phi_L - 1$ is surjective on $\mathcal{O}_{\tilde{L}}[[X_1, \ldots, X_n]]$ and on $\mathcal{O}_{\tilde{L}}[[X_1, \ldots, X_n]]^x$.

Corollary 3. Let \bar{k} be the algebraic closure of a finite field k. Then the sequences $(1''') \ 0 \to k[[X_1, \ldots, X_n]] \to \bar{k}[[X_1, \ldots, X_n]] \xrightarrow{\phi_K - 1} \bar{k}[[X_1, \ldots, X_n]] \to 1$ and

 $(\mathcal{Z}'') \ 1 \to k[[X_1, \dots, X_n]]^x \to \bar{k}[[X_1, \dots, X_n]]^x \stackrel{\phi_K \to 1}{\to} \bar{k}[[X_1, \dots, X_n]]^x \to 1$ are exact, where ϕ_k stands for the Frobenius automorphism over k, i.e $\alpha \mapsto \alpha^q$ for all $\alpha \in \bar{k}$ with q = |k|, applied on the coefficients of $\bar{k}[[X_1, \dots, X_n]]$.

Hence, $\phi_k - 1$ is surjective on $\bar{k}[[X_1, \ldots, X_n]]$ and on $\bar{k}[[X_1, \ldots, X_n]]^x$.

If the set of indeterminates is 0, then Corollary 2 reduces to the classical case mentioned in the beginning of the note.

2. Let L be a local field, and let \tilde{L} be the completion of the maximal unramified extension of L in a fixed algebraic closure Ω of L. The completion of Ω will be denoted by $\hat{\Omega}$. Further, let π be a prime of $\mathcal{O}_{\tilde{L}}$, the rign of integers in \tilde{L} , h a Lubin-Tate series in $\mathcal{O}_{\tilde{L}}[[X]]$, and $F_h(X,Y)$ the (unique) formal group law belonging to h. Coleman in [1] introduced a norm operator $\mathcal{N}_h : \mathcal{O}_{\tilde{L}}((X))^x \to \mathcal{O}_{\tilde{L}}((X))^x$ by

(*iii*) $(\mathcal{N}_h g) \circ h = \prod_{\omega \in W_h^1} g(X[+_h]\omega),$

where $O_{\tilde{L}}((X))^x$ is the multiplicative group of units in the ring of Laurent series over $O_{\tilde{L}}, W_h^1 := \{\omega \in \hat{\Omega} : h(\omega) = 0\}$, and $X[+_h]\omega = F_h(X, \omega)$ (see [2]).

Then, \mathcal{N}_h is an endomorphism of $\mathcal{O}_{\tilde{L}}((X))^x$ satisfying $\mathcal{N}_h g \equiv g^{\phi_L}(mod\pi)$ for all $g \in \mathcal{O}_{\tilde{L}}((X))^x$ (see Theorem 11 in [1]). The Laurent series $g \in \mathcal{O}_{\tilde{L}}((X))^x$ satisfying $\mathcal{N}_h g = g^{\phi_L}$ are called Coleman power series, and the subgroup of $\mathcal{O}_{\tilde{L}}((X))^x$ consisting of all Coleman series is denoted by $\mathcal{C}(\tilde{L}, h)$. In particular, $\mathcal{C}^{\circ}(\tilde{L}, h) := \mathcal{C}(\tilde{L}, h) \cap \mathcal{O}_{\tilde{L}}[[X]]^x$, the group of Coleman series of degree 0, plays a fundamental role in the construction of the non-abelian local class field theory. The most significant feature of $\mathcal{C}(\tilde{L}, h)$ is the

following: upon reduction mod π , $C(\tilde{L}, h)$ is isomorphically mapped onto $\bar{\mathcal{F}}_q((X))^x$ where \mathcal{F}_q denotes the residue class field of L, and $\bar{\mathcal{F}}_q$ for its algebraic closure. Hence, upon reduction mod π , $\mathcal{C}^{\circ}(\tilde{L}, h)$ is isomorphically mapped onto $\bar{\mathcal{F}}_q[[X]]^x$.

Lemma 2. Keeping all notations as above, assume that the Lubin-Tate formal power series $h \in \mathcal{O}_L[[X]]$. Then, the sequence

$$1 \to \mathcal{C}^{\circ}(L, f) \to \mathcal{C}^{\circ}(\tilde{L}, f) \stackrel{\phi_{L}-1}{\to} \mathcal{C}^{\circ}(\tilde{L}, f) \to 1$$

is exact, where $\mathcal{C}^{\circ}(L, f) = \mathcal{O}_L[[X]]^x \cap \mathcal{C}^{\circ}(\tilde{L}, f)$.

Proof. It suffices to show the surjectivity of $\phi_L - 1$. Before doing this, some remarks will be in place. By the assumption, the Lubin-Tate series h is in $\mathcal{O}_L[[X]]$, i.e. $h^{\phi_L} = h$. Hence, by the remark on pp. 49 of [3], $F_h(X, Y) \in \mathcal{O}_L[[X, Y]]$. Furthermore, $h^{\phi_L} = h$ implies that $\omega^{\phi_L} \in W_h^1$ for all $\omega \in W_h^1$. Hence, for any $\omega \in W_h^1$,

$$(X[+_{h}]\omega)^{\phi_{L}} = (F_{h}(X,\omega))^{\phi_{L}} = F_{h}^{\phi_{L}}(X,\omega^{\phi_{L}}) = F_{h}(X,\omega^{\phi_{L}}) = X[+_{h}]\omega^{\phi_{L}},$$

where $\omega^{\phi_L} \in W_h^1$.

From these remarks, it follows that $g^{\phi_L} \in \mathcal{C}^{\circ}(\tilde{L}, h)$ for every $g \in \mathcal{C}^{\circ}(\tilde{L}, h)$. In fact, by (iii), we have

$$\mathcal{N}_{h}(g^{\phi_{L}}) \circ h = \prod_{\omega \in W_{h}^{1}} g^{\phi_{L}}(X[+_{h}]\omega)$$
$$= \prod_{\omega \in W_{h}^{1}} g^{\phi_{L}}((X[+_{h}]\omega))^{\phi_{L}}$$
$$= (\prod_{\omega \in W_{h}^{1}} g(X[+_{h}]\omega))^{\phi_{L}}$$
$$= (\mathcal{N}_{h}(g) \circ h)^{\phi_{L}}$$
$$= (g^{\phi_{L}} \circ h)^{\phi_{L}} = (g^{\phi_{L}})^{\phi_{L}} \circ h),$$

so that $\mathcal{N}_h(g^{\phi_L}) - (g^{\phi_L})^{\phi_L}$ (otherwise, the power series $\mathcal{N}_h(g)^{\phi_L}) - (g^{\phi_L})^{\phi_L}$ will have infinitely many zeroes with increasing exponential values). Hence $g^{\phi_L} \in \mathcal{C}^{\circ}(\tilde{L}, h)$ as

desired. Note that at the second equality before the last one, the assumption $g \in C^{\circ}(\tilde{L}, h)$ was used. Now, returning to the proof of our assertion, take any $f \in C^{\circ}(\tilde{L}, h)$ and set $f \pmod{\pi} = \xi \in \overline{\mathcal{F}}_q[[X]]^x$. Then, by Corollary 3 above, there is a $\xi \in \overline{\mathcal{F}}_q[[X]]^x$ satisfying $\frac{\xi_1^{\phi F_q}}{\xi_1} = \xi$. Let f_1 be the unique element of $C^{\circ}(\tilde{L}, h)$ such that $f_1 \pmod{\pi} = \xi_1$. Then $f_1^{\phi L} \in C^{\circ}(\tilde{L}, h)$ by the remark above, and $\frac{f_1^{\phi L}}{f_1} \in C^{\circ}(\tilde{L}, h)$. Furthermore, upon reduction $\mod \pi, \frac{f_1^{\phi L}}{f_1}$ yields $\frac{\xi_1^{\phi F_q}}{\xi_1} = \xi$, so that $\frac{f_1^{\phi L}}{f_1} = f$ by the uniqueness of the lifting. This proves our assertion.

References

- [1] R. Coleman, Division values in local fields, Invent. Math 53 (1979), 91-116.
- [2] E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication, Perspectives in Math., vol. 3, Academic Press, Boston-Orlando, 1987.
- [3] K. Iwasawa, Local Class Field Theory, Oxford University Press, Oxford-New York, 1986.
- [4] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading-Massachusetts, 1995.

Kazım İlhan İKEDA & Masatoshi İKEDA TÜBİTAK-FEZA Gürsey Institute, P.O Box 6, 81220, Çengelköy, İstanbul-TURKEY email: ilhan@gursey.gov.tr email: ikeda@gursey.gov.tr Received 19.03.1999